Commutative Ring
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a commutative ring is a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
in which the multiplication operation is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
. The study of commutative rings is called
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
. Complementarily,
noncommutative algebra In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.


Definition and first examples


Definition

A ''ring'' is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
R equipped with two
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
s, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
under addition as well as a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot c\right). The identity elements for addition and multiplication are denoted 0 and 1 , respectively. If the multiplication is commutative, i.e. a \cdot b = b \cdot a, then the ring '' R '' is called ''commutative''. In the remainder of this article, all rings will be commutative, unless explicitly stated otherwise.


First examples

An important example, and in some sense crucial, is the ring of integers \mathbb with the two operations of addition and multiplication. As the multiplication of integers is a commutative operation, this is a commutative ring. It is usually denoted \mathbb as an abbreviation of the
German German(s) may refer to: * Germany (of or related to) ** Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ge ...
word ''Zahlen'' (numbers). A
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
is a commutative ring where 0 \not = 1 and every non-zero element a is invertible; i.e., has a multiplicative inverse b such that a \cdot b = 1 . Therefore, by definition, any field is a commutative ring. The
rational Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abi ...
,
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
and
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s form fields. If '' R '' is a given commutative ring, then the set of all
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
s in the variable X whose coefficients are in '' R '' forms the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
, denoted R \left X \right. The same holds true for several variables. If '' V '' is some
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
, for example a subset of some \mathbb^n , real- or complex-valued
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s on '' V '' form a commutative ring. The same is true for
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
or holomorphic functions, when the two concepts are defined, such as for '' V '' a complex manifold.


Divisibility

In contrast to fields, where every nonzero element is multiplicatively invertible, the concept of divisibility for rings is richer. An element a of ring '' R '' is called a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (alb ...
if it possesses a multiplicative inverse. Another particular type of element is the
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zer ...
s, i.e. an element a such that there exists a non-zero element b of the ring such that ab = 0 . If '' R '' possesses no non-zero zero divisors, it is called an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
(or domain). An element a satisfying a^n = 0 for some positive integer n is called
nilpotent In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cla ...
.


Localizations

The ''localization'' of a ring is a process in which some elements are rendered invertible, i.e. multiplicative inverses are added to the ring. Concretely, if '' S '' is a
multiplicatively closed subset In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset ''S'' of a ring ''R'' such that the following two conditions hold: * 1 \in S, * xy \in S for all x, y \in S. In other words, ''S'' is closed under taking finite ...
of '' R '' (i.e. whenever s,t \in S then so is st ) then the ''localization'' of '' R '' at '' S '', or ''ring of fractions'' with denominators in '' S '', usually denoted S^R consists of symbols subject to certain rules that mimic the cancellation familiar from rational numbers. Indeed, in this language '' \mathbb '' is the localization of '' \mathbb '' at all nonzero integers. This construction works for any integral domain '' R '' instead of '' \mathbb ''. The localization \left(R\backslash \left\\right)^R is a field, called the
quotient field In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of '' R ''.


Ideals and modules

Many of the following notions also exist for not necessarily commutative rings, but the definitions and properties are usually more complicated. For example, all ideals in a commutative ring are automatically
two-sided In mathematics, specifically in topology of manifolds, a compact codimension-one submanifold F of a manifold M is said to be 2-sided in M when there is an embedding ::h\colon F\times 1,1to M with h(x,0)=x for each x\in F and ::h(F\times 1,1\ ...
, which simplifies the situation considerably.


Modules

For a ring '' R '', an '' R ''-''module'' '' M '' is like what a vector space is to a field. That is, elements in a module can be added; they can be multiplied by elements of '' R '' subject to the same axioms as for a vector space. The study of modules is significantly more involved than the one of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s, since there are modules that do not have any
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
, that is, do not contain a
spanning set In mathematics, the linear span (also called the linear hull or just span) of a set of vectors (from a vector space), denoted , pp. 29-30, §§ 2.5, 2.8 is defined as the set of all linear combinations of the vectors in . It can be characterized ...
whose elements are
linearly independent In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are ...
s. A module that has a basis is called a free module, and a submodule of a free module needs not to be free. A module of finite type is a module that has a finite spanning set. Modules of finite type play a fundamental role in the theory of commutative rings, similar to the role of the
finite-dimensional vector space In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to di ...
s in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. ...
. In particular,
Noetherian rings In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
(see also , below) can be defined as the rings such that every submodule of a module of finite type is also of finite type.


Ideals

''Ideals'' of a ring '' R '' are the
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
s of '' R '', i.e., the modules contained in '' R ''. In more detail, an ideal '' I '' is a non-empty subset of '' R '' such that for all '' r '' in '' R '', '' i '' and '' j '' in '' I '', both '' ri '' and '' i+j '' are in '' I ''. For various applications, understanding the ideals of a ring is of particular importance, but often one proceeds by studying modules in general. Any ring has two ideals, namely the
zero ideal In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identi ...
'' \left\ '' and '' R '', the whole ring. These two ideals are the only ones precisely if '' R '' is a field. Given any subset '' F=\left\_ '' of '' R '' (where '' J '' is some index set), the ideal ''generated by F '' is the smallest ideal that contains '' F ''. Equivalently, it is given by finite linear combinations '' r_1 f_1 + r_2 f_2 + \dots + r_n f_n .''


Principal ideal domains

If '' F '' consists of a single element '' r '', the ideal generated by '' F '' consists of the multiples of '' r '', i.e., the elements of the form '' rs '' for arbitrary elements '' s ''. Such an ideal is called a
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
. If every ideal is a principal ideal, '' R '' is called a
principal ideal ring In mathematics, a principal right (left) ideal ring is a ring ''R'' in which every right (left) ideal is of the form ''xR'' (''Rx'') for some element ''x'' of ''R''. (The right and left ideals of this form, generated by one element, are called prin ...
; two important cases are '' \mathbb '' and '' k \left \right'', the polynomial ring over a field '' k ''. These two are in addition domains, so they are called
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, ...
s. Unlike for general rings, for a principal ideal domain, the properties of individual elements are strongly tied to the properties of the ring as a whole. For example, any principal ideal domain '' R '' is a
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an ...
(UFD) which means that any element is a product of irreducible elements, in a (up to reordering of factors) unique way. Here, an element ''a'' in a domain is called
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
if the only way of expressing it as a product '' a=bc ,'' is by either '' b '' or '' c '' being a unit. An example, important in field theory, are
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted ...
s, i.e., irreducible elements in '' k \left \right'', for a field '' k ''. The fact that '' \mathbb '' is a UFD can be stated more elementarily by saying that any natural number can be uniquely decomposed as product of powers of prime numbers. It is also known as the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the ord ...
. An element '' a '' is a
prime element In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish pri ...
if whenever '' a '' divides a product '' bc '', '' a '' divides '' b '' or '' c ''. In a domain, being prime implies being irreducible. The converse is true in a unique factorization domain, but false in general.


The factor ring

The definition of ideals is such that "dividing" '' I '' "out" gives another ring, the ''factor ring'' '' R '' / '' I '': it is the set of
coset In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
s of '' I '' together with the operations '' \left(a+I\right)+\left(b+I\right)=\left(a+b\right)+I '' and '' \left(a+I\right) \left(b+I\right)=ab+I ''. For example, the ring \mathbb/n\mathbb (also denoted \mathbb_n ), where '' n '' is an integer, is the ring of integers modulo '' n ''. It is the basis of
modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ...
. An ideal is ''proper'' if it is strictly smaller than the whole ring. An ideal that is not strictly contained in any proper ideal is called maximal. An ideal '' m '' is maximal
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
'' R '' / '' m '' is a field. Except for the
zero ring In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for a ...
, any ring (with identity) possesses at least one maximal ideal; this follows from Zorn's lemma.


Noetherian rings

A ring is called ''Noetherian'' (in honor of
Emmy Noether Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
, who developed this concept) if every ascending chain of ideals '' 0 \subseteq I_0 \subseteq I_1 \subseteq \dots \subseteq I_n \subseteq I_ \dots '' becomes stationary, i.e. becomes constant beyond some index '' n ''. Equivalently, any ideal is generated by finitely many elements, or, yet equivalent,
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
s of finitely generated modules are finitely generated. Being Noetherian is a highly important finiteness condition, and the condition is preserved under many operations that occur frequently in geometry. For example, if '' R '' is Noetherian, then so is the polynomial ring '' R \left _1,X_2,\dots,X_n\right'' (by Hilbert's basis theorem), any localization '' S^R '', and also any factor ring '' R '' / '' I ''. Any non-Noetherian ring '' R '' is the
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
of its Noetherian subrings. This fact, known as Noetherian approximation, allows the extension of certain theorems to non-Noetherian rings.


Artinian rings

A ring is called Artinian (after Emil Artin), if every descending chain of ideals '' R \supseteq I_0 \supseteq I_1 \supseteq \dots \supseteq I_n \supseteq I_ \dots '' becomes stationary eventually. Despite the two conditions appearing symmetric, Noetherian rings are much more general than Artinian rings. For example, '' \mathbb '' is Noetherian, since every ideal can be generated by one element, but is not Artinian, as the chain '' \mathbb \supsetneq 2\mathbb \supsetneq 4\mathbb \supsetneq 8\mathbb \dots '' shows. In fact, by the
Hopkins–Levitzki theorem In the branch of abstract algebra called ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring ''R'' (with 1) is called semiprimar ...
, every Artinian ring is Noetherian. More precisely, Artinian rings can be characterized as the Noetherian rings whose Krull dimension is zero.


The spectrum of a commutative ring


Prime ideals

As was mentioned above, \mathbb is a
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an ...
. This is not true for more general rings, as algebraists realized in the 19th century. For example, in \mathbb\left sqrt\right/math> there are two genuinely distinct ways of writing 6 as a product: 6 = 2 \cdot 3 = \left(1 + \sqrt\right)\left(1 - \sqrt\right). Prime ideals, as opposed to prime elements, provide a way to circumvent this problem. A prime ideal is a proper (i.e., strictly contained in R ) ideal p such that, whenever the product ab of any two ring elements a and b is in p, at least one of the two elements is already in p . (The opposite conclusion holds for any ideal, by definition.) Thus, if a prime ideal is principal, it is equivalently generated by a prime element. However, in rings such as \mathbb\left sqrt\right prime ideals need not be principal. This limits the usage of prime elements in ring theory. A cornerstone of algebraic number theory is, however, the fact that in any
Dedekind ring In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
(which includes \mathbb\left sqrt\right/math> and more generally the ring of integers in a number field) any ideal (such as the one generated by 6) decomposes uniquely as a product of prime ideals. Any maximal ideal is a prime ideal or, more briefly, is prime. Moreover, an ideal I is prime if and only if the factor ring R/I is an integral domain. Proving that an ideal is prime, or equivalently that a ring has no zero-divisors can be very difficult. Yet another way of expressing the same is to say that the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
R \setminus p is multiplicatively closed. The localisation \left(R \setminus p\right)^R is important enough to have its own notation: R_p. This ring has only one maximal ideal, namely pR_p. Such rings are called
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
.


The spectrum

The ''spectrum of a ring R'',This notion can be related to the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
of a linear operator, see
Spectrum of a C*-algebra In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra ''A'', denoted ''Â'', is the set of unitary equivalence classes of irreducible *-representations of ''A''. A *-representation π of ''A'' on a Hilbert space ''H'' is irreduc ...
and
Gelfand representation In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algeb ...
.
denoted by ''\text\ R'', is the set of all prime ideals of ''R''. It is equipped with a topology, the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
, which reflects the algebraic properties of ''R'': a basis of open subsets is given by ''D\left(f\right) = \left\'', where ''f'' is any ring element. Interpreting ''f'' as a function that takes the value ''f'' mod ''p'' (i.e., the image of ''f'' in the residue field ''R''/''p''), this subset is the locus where ''f'' is non-zero. The spectrum also makes precise the intuition that localisation and factor rings are complementary: the natural maps ''R'' → ''R''''f'' and ''R'' → ''R'' / ''fR'' correspond, after endowing the spectra of the rings in question with their Zariski topology, to complementary
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YF ...
and
closed immersion In algebraic geometry, a closed immersion of schemes is a morphism of schemes f: Z \to X that identifies ''Z'' as a closed subset of ''X'' such that locally, regular functions on ''Z'' can be extended to ''X''. The latter condition can be formaliz ...
s respectively. Even for basic rings, such as illustrated for ''R'' = Z at the right, the Zariski topology is quite different from the one on the set of real numbers. The spectrum contains the set of maximal ideals, which is occasionally denoted mSpec (''R''). For an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
''k'', mSpec (k 'T''1, ..., ''T''''n''/ (''f''1, ..., ''f''''m'')) is in bijection with the set Thus, maximal ideals reflect the geometric properties of solution sets of polynomials, which is an initial motivation for the study of commutative rings. However, the consideration of non-maximal ideals as part of the geometric properties of a ring is useful for several reasons. For example, the minimal prime ideals (i.e., the ones not strictly containing smaller ones) correspond to the
irreducible component In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal ( ...
s of Spec ''R''. For a Noetherian ring ''R'', Spec ''R'' has only finitely many irreducible components. This is a geometric restatement of
primary decomposition In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are relate ...
, according to which any ideal can be decomposed as a product of finitely many
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. Fo ...
s. This fact is the ultimate generalization of the decomposition into prime ideals in Dedekind rings.


Affine schemes

The notion of a spectrum is the common basis of commutative algebra and
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
. Algebraic geometry proceeds by endowing Spec ''R'' with a
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * ''The Sheaf'', a student-run newspaper se ...
\mathcal O (an entity that collects functions defined locally, i.e. on varying open subsets). The datum of the space and the sheaf is called an
affine scheme In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the ...
. Given an affine scheme, the underlying ring ''R'' can be recovered as the
global section In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
s of \mathcal O. Moreover, this one-to-one correspondence between rings and affine schemes is also compatible with ring homomorphisms: any ''f'' : ''R'' → ''S'' gives rise to a
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in valu ...
in the opposite direction The resulting equivalence of the two said categories aptly reflects algebraic properties of rings in a geometrical manner. Similar to the fact that
manifolds In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ne ...
are locally given by open subsets of R''n'', affine schemes are local models for schemes, which are the object of study in algebraic geometry. Therefore, several notions concerning commutative rings stem from geometric intuition.


Dimension

The ''Krull dimension'' (or dimension) dim ''R'' of a ring ''R'' measures the "size" of a ring by, roughly speaking, counting independent elements in ''R''. The dimension of algebras over a field ''k'' can be axiomatized by four properties: * The dimension is a local property: dim ''R'' = supp ∊ Spec ''R'' dim ''R''''p''. * The dimension is independent of nilpotent elements: if ''I'' ⊆ ''R'' is nilpotent then dim ''R'' = dim ''R'' / ''I''. * The dimension remains constant under a finite extension: if ''S'' is an ''R''-algebra which is finitely generated as an ''R''-module, then dim ''S'' = dim ''R''. * The dimension is calibrated by dim ''k'' 'X''1, ..., ''X''''n''= ''n''. This axiom is motivated by regarding the polynomial ring in ''n'' variables as an algebraic analogue of ''n''-dimensional space. The dimension is defined, for any ring ''R'', as the supremum of lengths ''n'' of chains of prime ideals For example, a field is zero-dimensional, since the only prime ideal is the zero ideal. The integers are one-dimensional, since chains are of the form (0) ⊊ (''p''), where ''p'' is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
. For non-Noetherian rings, and also non-local rings, the dimension may be infinite, but Noetherian local rings have finite dimension. Among the four axioms above, the first two are elementary consequences of the definition, whereas the remaining two hinge on important facts in
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
, the
going-up theorem In commutative algebra, a branch of mathematics, going up and going down are terms which refer to certain properties of chains of prime ideals in integral extensions. The phrase going up refers to the case when a chain can be extended by "upward i ...
and
Krull's principal ideal theorem In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, ''Krull ...
.


Ring homomorphisms

A ''ring homomorphism'' or, more colloquially, simply a ''map'', is a map ''f'' : ''R'' → ''S'' such that These conditions ensure ''f''(0) = 0. Similarly as for other algebraic structures, a ring homomorphism is thus a map that is compatible with the structure of the algebraic objects in question. In such a situation ''S'' is also called an ''R''-algebra, by understanding that ''s'' in ''S'' may be multiplied by some ''r'' of ''R'', by setting The ''kernel'' and ''image'' of ''f'' are defined by ker (''f'') = and im (''f'') = ''f''(''R'') = . The kernel is an
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
of ''R'', and the image is a subring of ''S''. A ring homomorphism is called an isomorphism if it is bijective. An example of a ring isomorphism, known as the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
, is \mathbf Z/n = \bigoplus_^k \mathbf Z/p_i where ''n'' = ''p''1''p''2...''p''''k'' is a product of pairwise distinct
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s. Commutative rings, together with ring homomorphisms, form a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
. The ring Z is the
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in this category, which means that for any commutative ring ''R'', there is a unique ring homomorphism Z → ''R''. By means of this map, an integer ''n'' can be regarded as an element of ''R''. For example, the
binomial formula In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
(a+b)^n = \sum_^n \binom n k a^k b^ which is valid for any two elements ''a'' and ''b'' in any commutative ring ''R'' is understood in this sense by interpreting the binomial coefficients as elements of ''R'' using this map. Given two ''R''-algebras ''S'' and ''T'', their
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
is again a commutative ''R''-algebra. In some cases, the tensor product can serve to find a ''T''-algebra which relates to ''Z'' as ''S'' relates to ''R''. For example,


Finite generation

An ''R''-algebra ''S'' is called finitely generated (as an algebra) if there are finitely many elements ''s''1, ..., ''s''''n'' such that any element of ''s'' is expressible as a polynomial in the ''s''''i''. Equivalently, ''S'' is isomorphic to A much stronger condition is that ''S'' is finitely generated as an ''R''-module, which means that any ''s'' can be expressed as a ''R''-linear combination of some finite set ''s''1, ..., ''s''''n''.


Local rings

A ring is called
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
if it has only a single maximal ideal, denoted by ''m''. For any (not necessarily local) ring ''R'', the localization at a prime ideal ''p'' is local. This localization reflects the geometric properties of Spec ''R'' "around ''p''". Several notions and problems in commutative algebra can be reduced to the case when ''R'' is local, making local rings a particularly deeply studied class of rings. The
residue field In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a ...
of ''R'' is defined as Any ''R''-module ''M'' yields a ''k''-vector space given by ''M'' / ''mM''. Nakayama's lemma shows this passage is preserving important information: a finitely generated module ''M'' is zero if and only if ''M'' / ''mM'' is zero.


Regular local rings

The ''k''-vector space ''m''/''m''2 is an algebraic incarnation of the
cotangent space In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T ...
. Informally, the elements of ''m'' can be thought of as functions which vanish at the point ''p'', whereas ''m''2 contains the ones which vanish with order at least 2. For any Noetherian local ring ''R'', the inequality holds true, reflecting the idea that the cotangent (or equivalently the tangent) space has at least the dimension of the space Spec ''R''. If equality holds true in this estimate, ''R'' is called a
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ide ...
. A Noetherian local ring is regular if and only if the ring (which is the ring of functions on the
tangent cone In geometry, the tangent cone is a generalization of the notion of the tangent space to a manifold to the case of certain spaces with singularities. Definitions in nonlinear analysis In nonlinear analysis, there are many definitions for a tangen ...
) \bigoplus_n m^n / m^ is isomorphic to a polynomial ring over ''k''. Broadly speaking, regular local rings are somewhat similar to polynomial rings. Regular local rings are UFD's.
Discrete valuation ring In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R'' i ...
s are equipped with a function which assign an integer to any element ''r''. This number, called the valuation of ''r'' can be informally thought of as a zero or pole order of ''r''. Discrete valuation rings are precisely the one-dimensional regular local rings. For example, the ring of germs of holomorphic functions on a
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
is a discrete valuation ring.


Complete intersections

By
Krull's principal ideal theorem In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, ''Krull ...
, a foundational result in the dimension theory of rings, the dimension of is at least ''r'' − ''n''. A ring ''R'' is called a
complete intersection ring In commutative algebra, a complete intersection ring is a commutative ring similar to the coordinate rings of varieties that are complete intersections. Informally, they can be thought of roughly as the local rings that can be defined using the "min ...
if it can be presented in a way that attains this minimal bound. This notion is also mostly studied for local rings. Any regular local ring is a complete intersection ring, but not conversely. A ring ''R'' is a ''set-theoretic'' complete intersection if the reduced ring associated to ''R'', i.e., the one obtained by dividing out all nilpotent elements, is a complete intersection. As of 2017, it is in general unknown, whether curves in three-dimensional space are set-theoretic complete intersections.


Cohen–Macaulay rings

The depth of a local ring ''R'' is the number of elements in some (or, as can be shown, any) maximal regular sequence, i.e., a sequence ''a''1, ..., ''a''''n'' ∈ ''m'' such that all ''a''''i'' are non-zero divisors in For any local Noetherian ring, the inequality holds. A local ring in which equality takes place is called a
Cohen–Macaulay ring In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebraic geometry, algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly ...
. Local complete intersection rings, and a fortiori, regular local rings are Cohen–Macaulay, but not conversely. Cohen–Macaulay combine desirable properties of regular rings (such as the property of being
universally catenary ring In mathematics, a commutative ring ''R'' is catenary if for any pair of prime ideals :''p'', ''q'', any two strictly increasing chains :''p''=''p''0 ⊂''p''1 ... ⊂''p'n''= ''q'' of prime ideals are contained in maximal strictly inc ...
s, which means that the (co)dimension of primes is well-behaved), but are also more robust under taking quotients than regular local rings.


Constructing commutative rings

There are several ways to construct new rings out of given ones. The aim of such constructions is often to improve certain properties of the ring so as to make it more readily understandable. For example, an integral domain that is integrally closed in its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
is called
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
. This is a desirable property, for example any normal one-dimensional ring is necessarily regular. Rendering a ring normal is known as ''normalization''.


Completions

If ''I'' is an ideal in a commutative ring ''R'', the powers of ''I'' form topological neighborhoods of ''0'' which allow ''R'' to be viewed as a
topological ring In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive ...
. This topology is called the ''I''-adic topology. ''R'' can then be completed with respect to this topology. Formally, the ''I''-adic completion is the
inverse limit In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can ...
of the rings ''R''/''In''. For example, if ''k'' is a field, ''k'' ''X'', the formal power series ring in one variable over ''k'', is the ''I''-adic completion of ''k'' 'X''where ''I'' is the principal ideal generated by ''X''. This ring serves as an algebraic analogue of the disk. Analogously, the ring of ''p''-adic integers is the completion of Z with respect to the principal ideal (''p''). Any ring that is isomorphic to its own completion, is called
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
. Complete local rings satisfy
Hensel's lemma In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to ...
, which roughly speaking allows extending solutions (of various problems) over the residue field ''k'' to ''R''.


Homological notions

Several deeper aspects of commutative rings have been studied using methods from homological algebra. lists some open questions in this area of active research.


Projective modules and Ext functors

Projective modules can be defined to be the
direct summand The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
s of free modules. If ''R'' is local, any finitely generated projective module is actually free, which gives content to an analogy between projective modules and
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
s. The
Quillen–Suslin theorem The Quillen–Suslin theorem, also known as Serre's problem or Serre's conjecture, is a theorem in commutative algebra concerning the relationship between free modules and projective modules over polynomial rings. In the geometric setting it is ...
asserts that any finitely generated projective module over ''k'' 'T''1, ..., ''T''''n''(''k'' a field) is free, but in general these two concepts differ. A local Noetherian ring is regular if and only if its
global dimension In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring ''A'' denoted gl dim ''A'', is a non-negative integer or infinity which is a homological invariant ...
is finite, say ''n'', which means that any finitely generated ''R''-module has a
resolution Resolution(s) may refer to: Common meanings * Resolution (debate), the statement which is debated in policy debate * Resolution (law), a written motion adopted by a deliberative body * New Year's resolution, a commitment that an individual mak ...
by projective modules of length at most ''n''. The proof of this and other related statements relies on the usage of homological methods, such as the
Ext functor In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic stru ...
. This functor is the
derived functor In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in vari ...
of the functor The latter functor is exact if ''M'' is projective, but not otherwise: for a surjective map ''E'' → ''F'' of ''R''-modules, a map ''M'' → ''F'' need not extend to a map ''M'' → ''E''. The higher Ext functors measure the non-exactness of the Hom-functor. The importance of this standard construction in homological algebra stems can be seen from the fact that a local Noetherian ring ''R'' with residue field ''k'' is regular if and only if vanishes for all large enough ''n''. Moreover, the dimensions of these Ext-groups, known as
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s, grow polynomially in ''n'' if and only if ''R'' is a local complete intersection ring. A key argument in such considerations is the
Koszul complex In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its ...
, which provides an explicit free resolution of the residue field ''k'' of a local ring ''R'' in terms of a regular sequence.


Flatness

The
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
is another non-exact functor relevant in the context of commutative rings: for a general ''R''-module ''M'', the functor is only right exact. If it is exact, ''M'' is called
flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), ...
. If ''R'' is local, any finitely presented flat module is free of finite rank, thus projective. Despite being defined in terms of homological algebra, flatness has profound geometric implications. For example, if an ''R''-algebra ''S'' is flat, the dimensions of the fibers (for prime ideals ''p'' in ''R'') have the "expected" dimension, namely dim ''S'' − dim ''R'' + dim (''R'' / ''p'').


Properties

By Wedderburn's theorem, every finite
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
is commutative, and therefore a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
. Another condition ensuring commutativity of a ring, due to Jacobson, is the following: for every element ''r'' of ''R'' there exists an integer such that . If, ''r''2 = ''r'' for every ''r'', the ring is called
Boolean ring In mathematics, a Boolean ring ''R'' is a ring for which ''x''2 = ''x'' for all ''x'' in ''R'', that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2. Every Boolean ring gives rise to a Boolean al ...
. More general conditions which guarantee commutativity of a ring are also known.


Generalizations


Graded-commutative rings

A
graded ring In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the ...
''R'' = ⨁''i''∊Z ''R''''i'' is called graded-commutative if, for all homogeneous elements ''a'' and ''b'', If the ''R''''i'' are connected by differentials ∂ such that an abstract form of the
product rule In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + ...
holds, i.e., ''R'' is called a commutative differential graded algebra (cdga). An example is the complex of
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
s on a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, with the multiplication given by the
exterior product In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of th ...
, is a cdga. The cohomology of a cdga is a graded-commutative ring, sometimes referred to as the
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually und ...
. A broad range examples of graded rings arises in this way. For example, the
Lazard ring In mathematics, Lazard's universal ring is a ring introduced by Michel Lazard in over which the universal commutative one-dimensional formal group law is defined. There is a universal commutative one-dimensional formal group law over a universal ...
is the ring of cobordism classes of complex manifolds. A graded-commutative ring with respect to a grading by Z/2 (as opposed to Z) is called a
superalgebra In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading. T ...
. A related notion is an almost commutative ring, which means that ''R'' is
filtered Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter m ...
in such a way that the associated graded ring is commutative. An example is the
Weyl algebra In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form : f_m(X) \partial_X^m + f_(X) \partial_X^ + \cdots + f_1(X) \partial_X + f_0(X). More prec ...
and more general rings of differential operators.


Simplicial commutative rings

A
simplicial commutative ring In algebra, a simplicial commutative ring is a commutative monoid in the category of simplicial abelian groups, or, equivalently, a simplicial object in the category of commutative rings. If ''A'' is a simplicial commutative ring, then it can be sho ...
is a
simplicial object In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined a ...
in the category of commutative rings. They are building blocks for (connective)
derived algebraic geometry Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over \mathbb), simplicial commutati ...
. A closely related but more general notion is that of E-ring.


Applications of the commutative rings

* Holomorphic functions *
Algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense ...
*
Topological K-theory In mathematics, topological -theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early ...
*
Divided power structure In mathematics, specifically commutative algebra, a divided power structure is a way of making expressions of the form x^n / n! meaningful even when it is not possible to actually divide by n!. Definition Let ''A'' be a commutative ring with an ...
s *
Witt vector In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors W(\mathbb_p) over the finite field of ord ...
s *
Hecke algebra In mathematics, the Hecke algebra is the algebra generated by Hecke operators. Properties The algebra is a commutative ring. In the classical elliptic modular form theory, the Hecke operators ''T'n'' with ''n'' coprime to the level acting o ...
(used in
Wiles's proof of Fermat's Last Theorem Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's ...
) *
Fontaine's period rings In mathematics, Fontaine's period rings are a collection of commutative rings first defined by Jean-Marc Fontaine that are used to classify ''p''-adic Galois representations. The ring BdR The ring \mathbf_ is defined as follows. Let \mathbf_p deno ...
*
Cluster algebra Cluster algebras are a class of commutative rings introduced by . A cluster algebra of rank ''n'' is an integral domain ''A'', together with some subsets of size ''n'' called clusters whose union generates the algebra ''A'' and which satisfy variou ...
*
Convolution algebra In functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra (or more generally a Banach algebra), such that representations of the algebra are ...
(of a commutative group) *
Fréchet algebra In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra A over the real or complex numbers that at the same time is also a (locally convex) Fréchet space. The multiplicati ...


See also

* Almost ring, a certain generalization of a commutative ring * Divisibility (ring theory):
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cla ...
, (ex. dual numbers) * Ideals and modules: Radical of an ideal, Morita equivalence * Ring homomorphisms: integral element: Cayley–Hamilton theorem, Integrally closed domain, Krull ring, Krull–Akizuki theorem, Mori–Nagata theorem * Primes: Prime avoidance lemma, Jacobson radical, Nilradical of a ring, Spectrum: Compact space, Connected ring, Differential calculus over commutative algebras, Banach–Stone theorem * Local rings: Gorenstein local ring (also used in
Wiles's proof of Fermat's Last Theorem Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's ...
): Duality (mathematics), Eben Matlis; Dualizing module, Popescu's theorem, Artin approximation theorem.


Notes


Citations


References

* * * * * * *


Further reading

* * * * * * ''(Reprinted 1975-76 by Springer as volumes 28-29 of Graduate Texts in Mathematics.)'' {{Authority control Commutative algebra Ring theory Algebraic structures